Regularization on Image Patches: a linear reconstruction from manifold embedding
نویسندگان
چکیده
We propose an image representation scheme combining the local and nonlocal characterization of patches in an image. Our representation scheme can be shown to be equivalent to a tight frame constructed from convolving local bases (e.g. wavelet frames, discrete cosine transforms, etc.) with nonlocal bases (e.g. spectral basis induced by nonlinear dimension reduction on patches), and we call the resulting frame elements convolution framelets. Insight gained from analyzing the proposed representation leads to a novel interpretation of a recent highperformance patch-based image inpainting algorithm using Point Integral Method (PIM) and Low Dimension Manifold Model (LDMM) [Osher, Shi and Zhu, 2016]. In particular, we show that LDMM is a weighted `2-regularization on the coefficients obtained by decomposing images into linear combinations of convolution framelets; based on this understanding, we extend the original LDMM to a reweighted version that yields further improved inpainting results. In addition, we establish the energy concentration property of convolution framelet coefficients for the setting where the local basis is constructed from a given nonlocal basis via a linear reconstruction framework; a generalization of this framework to unions of local embeddings can provide a natural setting for interpreting BM3D, one of the state-of-the-art image denoising algorithms.
منابع مشابه
A Tale of Two Bases: Local-Nonlocal Regularization on Image Patches with Convolution Framelets
We propose an image representation scheme combining the local and nonlocal characterization of patches in an image. Our representation scheme can be shown to be equivalent to a tight frame constructed from convolving local bases (e.g., wavelet frames, discrete cosine transforms, etc.) with nonlocal bases (e.g., spectral basis induced by nonlinear dimension reduction on patches), and we call the...
متن کاملManifold Based Low-Rank Regularization for Image Restoration and Semi-Supervised Learning
Low-rank structures play important role in recent advances of many problems in image science and data science. As a natural extension of low-rank structures for data with nonlinear structures, the concept of the low-dimensional manifold structure has been considered in many data processing problems. Inspired by this concept, we consider a manifold based low-rank regularization as a linear appro...
متن کاملHashing Image Patches for Zooming
In this paper we present a Bayesian image zooming/super-resolution algorithm based on a patch based representation. We work on a patch based model with overlap and employ a Locally Linear Embedding (LLE) based approach as our data fidelity term in the Bayesian inference. The image prior imposes continuity constraints across the overlapping patches. We apply an error back-projection technique, w...
متن کاملCT Image Reconstruction in a Low Dimensional Manifold
Regularization methods are commonly used in X-ray CT image reconstruction. Different regularization methods reflect the characterization of different prior knowledge of images. In a recent work, a new regularization method called a low-dimensional manifold model (LDMM) is investigated to characterize the low-dimensional patch manifold structure of natural images, where the manifold dimensionali...
متن کاملPrediction of CT Substitutes from MR Images Based on Local Diffeomorphic Mapping for Brain PET Attenuation Correction.
Attenuation correction is important for PET reconstruction. In PET/MR, MR intensities are not directly related to attenuation coefficients that are needed in PET imaging. The attenuation coefficient map can be derived from CT images. Therefore, prediction of CT substitutes from MR images is desired for attenuation correction in PET/MR. METHODS This study presents a patch-based method for CT p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.01377 شماره
صفحات -
تاریخ انتشار 2016